
Santa Clara High Technology Law Journal

Volume 18 | Issue 2 Article 3

January 2002

Source Code versus Object Code: Patent
Implications for the Open Source Community
Daniel S. Lin

Matthew Sag

Ronald S. Laurie

Follow this and additional works at: http://digitalcommons.law.scu.edu/chtlj

Part of the Law Commons

This Article is brought to you for free and open access by the Journals at Santa Clara Law Digital Commons. It has been accepted for inclusion in Santa
Clara High Technology Law Journal by an authorized administrator of Santa Clara Law Digital Commons. For more information, please contact
sculawlibrarian@gmail.com.

Recommended Citation
Daniel S. Lin, Matthew Sag, and Ronald S. Laurie, Source Code versus Object Code: Patent Implications for the Open Source Community,
18 Santa Clara High Tech. L.J. 235 (2001).
Available at: http://digitalcommons.law.scu.edu/chtlj/vol18/iss2/3

http://digitalcommons.law.scu.edu/chtlj?utm_source=digitalcommons.law.scu.edu%2Fchtlj%2Fvol18%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.law.scu.edu/chtlj/vol18?utm_source=digitalcommons.law.scu.edu%2Fchtlj%2Fvol18%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.law.scu.edu/chtlj/vol18/iss2?utm_source=digitalcommons.law.scu.edu%2Fchtlj%2Fvol18%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.law.scu.edu/chtlj/vol18/iss2/3?utm_source=digitalcommons.law.scu.edu%2Fchtlj%2Fvol18%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.law.scu.edu/chtlj?utm_source=digitalcommons.law.scu.edu%2Fchtlj%2Fvol18%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/578?utm_source=digitalcommons.law.scu.edu%2Fchtlj%2Fvol18%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sculawlibrarian@gmail.com

SOURCE CODE VERSUS OBJECT CODE:
PATENT IMPLICATIONS FOR THE OPEN

SOURCE COMMUNITY

Daniel Lin,t Matthew Sag,tt and Ronald S. Lauriettt

I. INTRODUCTION

Since the Federal Circuit's 1995 decision in In re Beauregard
and the United States Patent and Trademark Office's ("PTO")
subsequent issuance of its Guidelines for Computer Related
Inventions ("PTO Guidelines") in 1996, computer programs
embodied in a computer-readable medium are now considered
patentable subject matter under 35 U.S.C. § 101 by the PTO.1

Specifically, patent claims, now commonly referred to as "Beauregard
claims," that recite an invention embodied in a computer-readable
medium are readily allowed by the PTO as long as they satisfy the
novelty, non-obviousness, and utility requirements of 35 U.S.C. §§
102 and 103.2 However, the Federal Circuit has never definitely
concluded whether such embodied computer programs are indeed

t Daniel Lin is an associate at Skadden, Arps, Slate, Meagher & Flom LLP in Palo
Alto, CA. He can be reached at dlin@skadden.com.

t" Matthew Sag is an associate at Skadden, Arps, Slate, Meagher & Flom LLP in Palo
Alto, CA. He can be reached at msag@skadden.com.

ttt Ron Laurie is a partner and the head of the IP Strategies and Transactions Practice at
Skadden, Arps, Slate, Meagher & Flom LLP in Palo Alto, CA. He can be reached at
rlaurie@skadden.com. The authors would like to thank David Hansen, Fred Kim, Gene Su,
Joseph Yang, and participants at Information Insecurity: Protecting Data in the Digital Age at
Santa Clara University for their helpful discussions and comments.

I. In re Beauregard, 53 F.3d 1583 (Fed. Cir. 1995) ("The Commissioner now states 'that
computer programs embodied in a tangible medium, such as floppy diskettes, are patentable
subject matter under 35 U.S.C. § 101 '); Examination Guidelines for Computer Related
Inventions, 61 Fed. Reg. 7478, 7481 (Patent & Trademark Office, U.S. Dep't of Commerce)
(Feb. 28, 1996) [hereinafter Examination Guidelines] ("When functional descriptive material is
recorded on some computer-readable medium it becomes structurally and functionally
interrelated to the medium and will be statutory in most cases."). See also 35 U.S.C. § 101
(2000).

2. 35 U.S.C. §§ 102-103.

236 COMPUTER & HIGH TECHNOLOGY LAW JOURNAL [Vol. 18

patentable. Therefore, the question is raised, what does the PTO
mean by a "computer program?, 3

To appreciate the ambiguity of the term "computer program,"
imagine a scenario in which a programmer at a security software
company is searching the Web for an elegant solution to a
cryptographic problem. He comes across a cryptography open source
project Web site that appears to offer such a solution. The
programmer downloads the source code from the Web site onto his
computer's hard drive. However, after inspecting the source code, he
concludes that the solution provided by the source code is not
sufficiently robust to be used at his company and decides not to use
the code. Now, further assume that unknown to either the
programmer or the open source project, the functionality described in
the downloaded source code is covered by a third party's patent (i.e.,
in Beauregard form). By simply downloading the source code onto
his hard drive (i.e., a computer-readable medium), has the
programmer infringed the third party's patent?

In a world where source code on a hard drive is a computer
program embodied in a computer-readable medium the programmer
has infringed the third party's patent, because by merely downloading
the source code, the programmer has "made" the computer program
under the Patent Act.4 Thus, under such an interpretation of
''computer program," any person or company wishing to assess the
quality of source code by downloading a copy simply to examine it,
without even compiling or executing it, could potentially be
infringing another's patent. Such potential for patent liability could
discourage the widespread distribution of source code that produces
the exchange of new ideas, innovative theories and techniques, and
secure coding practices that are so valued by the open source ideal.
As such, those in the open source community typically view
"software patents" as "the monster hiding under every software

3. The PTO Manual of Patent Examining Procedure § 2106 defines a computer program
as "a set of instructions capable of being executed by a computer." PATENT & TRADEMARK
OFFICE, U.S. DEP'T OF COMMERCE, MANUAL OF PATENT EXAMINING PROCEDURE § 2106, at
2100-13 (8th ed. Aug. 2001) (emphasis added) [hereinafter MPEP], available at

http://www.uspto.gov/web/offices/pac/mpep/mpep.htm.

4. 35 U.S.C. § 271 (2000) ("Except as otherwise provided in this title, whoever, without
authority makes, uses, offers to sell or sells any patented invention, within the United States or

imports into the United States any patented invention during the term of the patent therefor,
infringes the patent) (emphasis added). Id. Downloading source code creates a local copy of

that source code, thereby effectively "making" the source code.

SOURCE CODE VERSUS OBJECT CODE

developer's bed."5 Nevertheless, rather than addressing the
ambiguities of computer software patentability in the current legal
framework, much of the open source discussion regarding patents
focuses on the lack of novelty or obviousness in software patent
claims.6

It is far from clear whether we live in a world where source code
on a hard drive (or any other computer-readable medium) is
considered statutory subject matter as a "computer program" by the
PTO or the Federal Circuit. This Article explores the current legal
framework regarding computer software and patents. It explores the
distinctions between source code and object code and discusses the
legal ramifications of these distinctions in patent law. Part II provides
a brief discussion of the technical distinctions between source code
and object code. Part III explores the issue of whether source code
infringes software patents, presents an argument that the infringement
of software by source code may overextend patent jurisprudence, and
points out the ambiguities of the PTO with regard to Beauregard
claims when applied to source code. Finally, Part IV examines the
implications of the foregoing for the open source community and
concludes that if source code does not infringe patents, then many
important open source activities may be free from software patent
concerns.

5. DONALD K. ROSENBERG, OPEN SOURCE: THE UNAUTHORIZED WHITE PAPERS 240
(2000). See also RUSSELL C. PAVLICEK, EMBRACING INSANITY: OPEN SOURCE SOFTWARE

DEVELOPMENT 161 (2000) ("The use of software patents has been a real problem in the Open
Source world.); Richard Stallman, The GNU Operating System and the Free Software
Movement, in OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION 53-70 (Chris
DiBona et al. eds., 1999) ("The worst threat we face comes from software patents, which can
put algorithms and features off limits to free software for up to twenty years."), available at
http://www.gnu.org/gnu/thegnuproject.html (last visited Apr. 11, 2002).

6. See, e.g., Richard Stallman, The Anatomy of a Trivial Patent, LINUX TODAY, May 26,
2000 ("Programmers are well aware that many of the software patents cover laughably obvious
ideas."), at http://linuxtoday.com/news story.php3?ltsn=2000-05-26-004-04-OP-LF; LEAGUE
FOR PROGRAMMING FREEDOM, AGAINST SOFTWARE PATENTS, Feb. 28, 1991, at
http://lpf.ai.mit.edu/Patents/against-software-patents.html (last modified Apr. 29, 1994);
Lawrence Lessig, The Problem with Patents, THE INDUSTRY STANDARD, Apr. 23, 1999 ("What
is 'novel,' 'nonobvious' or 'useful' is hard enough to know in a relatively stable field. In a
transforming market [such as the Internet], it's nearly impossible for anyone.., to identify
what's 'novel."' (alteration added)), at
http://www.thestandard.com/article/display/0,1151,4296,00.html. Additionally, two Web sites
provide more information on the case against software patents: League for Programming
Freedom, at http://lpf.ai.mit.edu/Patents/patents.html and Free Patents: Protecting Innovation
and Competition in the IT Industry, at http://www.freepatents.org/.

2002]

238 COMPUTER & HIGH TECHNOLOGY LAWJOURNAL [Vol. 18

II. SOURCE CODE VERSUS OBJECT CODE

Source code has been described as a computer program written
in a high level human readable language. In contrast, the related
object code is the same computer program written in computer
readable format, which is required for the program's execution by a
computer.8 One important difference between source code and object
code is that source code is generally platform-independent, meaning
that it does not refer to the intricacies of any particular type of
computer. 9 In contrast, object code is platform-specific and must
necessarily refer to the inner workings of the particular computer
(e.g., memory locations, instruction sets, etc.) upon which the object
code is to be executed. 10 In order to convert source code into object
code, the source code is provided to a compiler, a separate computer
program that reads the source code and translates it into the object
code.11 As the compiler is executed, it performs lexical, syntactic,

7. Reiffen v. Microsoft Corp., 214 F.3d 1342, 1344 (Fed. Cit. 2000) ("A source program
is a computer program written in a high level human readable language which the application
refers to as source code; the end product of the compilation of the source program is a binary
machine language composition which the application refers to as object code, and which is
required for the program's execution by a computer.").

8. Id.
9. Webopedia defines a "high-level language" as "[a] programming language such as C,

FORTRAN, or Pascal that enables a programmer to write programs that are more or less
independent of a particular type of computer." WEBOPEDIA, HIGH-LEVEL LANGUAGE
(emphasis added), at http://www.webopedia.comlTERM/h/highlevel-language.htmi (last
modified Oct. 26,1996).

10. Webopedia defines "machine languages" as "the only languages understood by
computers." WEBOPEDIA, MACHINE LANGUAGE (emphasis added), at
http://www.webopedia.com/TERM/m/machinelanguage.html (last modified Nov. 16, 2001).
For the purposes of this Article, object code is synonymous with "machine language" or
"executable code."

11. Object code may be defined in various ways. For the purposes of this Article, the
term "object code" will be synonymous with "machine language" or "executable code," see
supra note 10. Webopedia defines object code as:

The code produced by a compiler. Programmers write programs in a form called
source code. The source code consists of instructions in a particular language,
like C or FORTRAN. Computers, however, can only execute instructions written
in a low-level language called machine language.
To get from source code to machine language, the programs must be transformed
by a compiler. The compiler produces an intermediary form called object code.
Object code is often the same as or similar to a computer's machine language.
The final step in producing an executable program is to transform the object code
into machine language, if it is not already in this form. This can be done by a
number of different types of programs, called assemblers, binders, linkers, and
loaders.

WEBOPEDIA, OBJECT CODE (emphasis added), at

http://www.webopedia.com/TERMlo/object code.html (last modified Sept. 1, 1996).

SOURCE CODE VERSUS OBJECT CODE

and semantic analyses of the source code, which is stored in a source
buffer in the computer's memory, outputting the compiled object code
into an object buffer. 12

During the compilation process, the compiler can significantly
improve the performance of the object code (a process known as
"optimization"), by adjusting and manipulating code generation in
certain ways. For example, a compiler can optimize the object code
by improving the efficiency of loops, procedure calls, address
calculations, and peephole transformations. 13 Such improvements are
known as machine-independent optimizations since they do not take
into consideration any properties of the computer that will execute the
object code. 14 Furthermore, in order to generate object code, a
compiler must have precise knowledge of the instruction set of the
computer upon which the code is to be executed and therefore can
create further efficiencies through machine-dependent optimizations
such as register allocation and the utilization of special machine-
instruction sequences. 15 Depending upon the skill and objectives of
the compiler writer, there is great variety in the level of code
optimization that different compilers perform, resulting in
significantly different object code given a particular piece of source
code. 16

III. CAN SOURCE CODE INFRINGE PATENT CLAIMS?

As specifically enumerated by the Patent Act, only a process,
machine, manufacture, or composition of matter can be patented.17

These four express statutory categories (known as "statutory subject
matter") exhaust the possible subject matter that can be patentable

Furthermore, "object code" in this Article means "absolute machine language" that can be
placed in a fixed location in a computer's memory and immediately executed. In contrast, a
"relocatable machine language program," also known as an object module, allows subprograms
to be compiled separately and linked together and laded for execution by a link loader. See
ALFRED V. AHO ET AL., COMPILERS: PRINCIPLES, TECHNIQUES, AND TOOLS 514 (1985).

12. See AHO, supra note 11, at 587.
13. See id.
14. See id. at 585.
15. See id. at 587.
16. See id.
17. 35 U.S.C. § 101 (2000) ("Whoever invents or discovers any new and useful process,

machine, manufacture, or composition of matter, or any new and useful improvement thereof,
may obtain a patent therefore, subject to the conditions and requirements of this title.").

20021

240 COMPUTER & HIGH TECHNOLOGY LA WJOURNAL [Vol. 18

inventions.18 However, the Supreme Court has given a broad
interpretation to these categories, indicating that "Congress intended
statutory subject matter to 'include anything under the sun that is
made by man."" 9 In the computer software arts, only three of the
four express statutory categories are implicated. These are process,
machine, and manufacture claims. This section concludes that only
object code can be implicated in process and machine claims.
Furthermore, while object code that is embodied on a computer-
readable medium infringes a manufacture claim (i.e., Beauregard
claim), it is unclear whether source code that is similarly embodied
also constitutes statutory subject matter that infringes such claims.

A. Computer Software Claimed as a Machine

The Federal Circuit's jurisprudence regarding machine claims in
the computer software arts culminated in its 1998 landmark decision
in State Street Bank & Trust Co. v. Signature Financial Group, Inc.20

In State Street, the Federal Circuit developed a new "practical utility"
test to determine whether a machine claim related to software was
statutory subject matter by simply assessing whether the software
produced "a useful, concrete, and tangible result.",21 The claim at
issue in State Street was directed' to a "data processing system," which
the court construed as a machine claim, which is proper statutory
subject matter under § 101.22 In particular, the claim included means-
plus-function elements, for which the related structures disclosed in
the specification were arithmetic logic circuits configured to perform
certain tasks.23 As described in the patent specification, such
"configurations" to the arithmetic logic circuits were effected by
software.24 In order to effect such arithmetic logic circuits, such

18. See Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 483 (1974) ("[N]o patent is
available for a discovery, however useful, novel, and nonobvious, unless it falls within one of
the express categories of patentable subject matter of 35 U.S.C. § 101.").

19. Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980); see also Diamond v. Diehr, 450
U.S. 175, 182 (1981); Bonito Boats, Inc. v. Thunder Craft Boats, Inc., 489 U.S. 141, 154 (1989);
In re Alappat, 33 F.3d 1526, 1542 (Fed. Cir. 1994) ("Thus, it is improper to read into § 101
limitations as to the subject matter that may be patented where the legislative history does not
indicate that Congress clearly intended such limitations.").

20. State Street Bank & Trust Co. v. Signature Fin. Group, Inc., 149 F.3d 1368 (Fed. Cir.
1998).

21. Id. at 1373.
22. Id. at 1372.
23. Id. at 1371-72.
24. U.S. Patent No. 5,193,056 (issued Mar. 9, 1993) ("The portfolio/fund accountant

makes use of a personal computer 44 programmed with software 50.").

2002] SOURCE CODE VERSUS OBJECT CODE

software must necessarily be object code, not source code, that is
loaded into the memory of a personal computer.

The decision in State Street followed a string of cases in the mid
1990s that provided the Federal Circuit's rationale for favoring the
patenting of general purpose computers running software (necessarily
in object code form, not source code).25 Most significantly, in In re
Alappat, the court held that a general-purpose computer programmed
to perform particular functions pursuant to instructions from software
effectively created a new machine that could be patentable under §
101.26 Therefore, under current jurisprudence, software, as embodied
within a general-purpose computer, is patentable as a machine that
realizes the functionality of the software, as long as such software
produces "a useful, concrete, and tangible result. 27 Necessarily, such
software must be object code rather than source code.

B. Computer Software Claimed as a Process

One year after State Street, in AT&T Corp. v. Excel
Communications, Inc., the Federal Circuit extended its State Street
decision to process claims. 28 The AT&T court held that a process
claim need not physically transform the subject matter of the
invention from one form to another.29 Rather, the inquiry is whether
the mathematical algorithm used in the method is applied in a
practical manner to produce a useful result. 30 As such, the Federal
Circuit essentially recognized that software-related processes were no

25. See In re Beauregard, 53 F.3d 1583, 1584 (Fed. Cir. 1995) ("'[C]omputer programs
embodied in a tangible medium, such as floppy diskettes, are patentable subject matter under 35
U.S.C. § 101 and must be examined under 35 U.S.C. §§ 102 and 103."'); In re Alappat, 33 F.3d
1526, 1545 (Fed. Cir. 1994) ("[A] computer operating pursuant to software may represent
patentable subject matter, provided, of course, that the claimed subject matter meets all of the
other requirements of Title 35."); In re Lowry, 32 F.3d 1579, 1583-84 (Fed. Cir. 1994)
(Particular data structures are statutory subject matter because, "more than mere abstraction,...
data structures are specific electrical or magnetic structural elements in a memory... that
provide increased efficiency in computer operation."); In re Warmerdam, 33 F.3d 1354, 1361
n.6 (Fed. Cir. 1994) ("[T]he storage of data in a memory physically alters the memory, and thus
in some sense gives rise to a new memory."); Arrythmia Research Tech., Inc. v. Corazonix
Corp., 958 F.2d 1053, 1060 (Fed. Cir. 1992) (Computer-performed operations that simply
"transform a particular input signal to a different output signal, in accordance with the internal
structure of the computer as configured by electronic instructions," are statutory subject matter.).
See also Examination Guidelines, supra note 1, at 7479.

26. In re Alappat, 33 F.3d at 1545.
27. State Street Bank & Trust Co. v. Signature Fin. Group, Inc., 149 F.3d 1368, 1373

(Fed. Cir. 1998).
28. AT&T Corp. v. Excel Communications, Inc., 172 F.3d 1352, 1358 (Fed. Cir. 1999).
29. Id.
30. Id. at 1360.

242 COMPUTER & HIGH TECHNOLOGY LA WJOURNAL [Vol. 18

different from other inventions with regard to using principles of
novelty, non-obviousness and utility to determine patentability.
Consequently, software can be patented as a process claim whose
elements describe the functionality of the software, as long as such
software produces "a useful, concrete, and tangible result., 3 1 It is
important to note, however, that such software process claims can
only be infringed when the process is practiced-that is, when the
software is actually running on the computer-and for the software to
be running on the computer, that software must be in object code, not
source code.

C. Computer Software Claimed as a Manufacture

Since the Federal Circuit's 1995 decision in In re Beauregard
and the issuance of the PTO Guidelines in 1996, the PTO has been
readily allowing computer programs embodied in a computer-
readable medium as proper manufacture claims under 35 U.S.C. §
101.32 Nevertheless, the Federal Circuit has never definitively
decided the issue. In Beauregard, the PTO Board of Patent Appeals
and Interferences' ("Board") rejected Beauregard's computer program
product claim on the basis of the printed matter doctrine.3 3 However,
during the appeal's pendency, apparently on the heels of the Federal
Circuit's decision in In re Lowry on August 26, 1994, the PTO,
reversing its previous position, stated that "computer programs
embodied in a tangible medium, such as floppy diskettes, are
patentable subject matter under 35 U.S.C. § 101 and must be
examined under 35 U.S.C. §§ 102 and 103."34 Because the
Commissioner ultimately agreed with Beauregard that the printed
matter doctrine was not applicable, no case or controversy existed and
the Federal Circuit vacated the Board of Patent Appeals and
Interferences' rejection.3 5 Therefore, since Beauregard, the PTO has
accepted such "computer-readable medium" claims, commonly

31. State Street Bank, 149 F.3d at 1373.

32. In re Beauregard, 53 F.3d 1583,1584 (Fed. Cir. 1995) ("The Commissioner now
states 'that computer readable programs embodied in a tangible medium, such as floppy
diskettes, are patentable subject matter under 35 U.S.C. § 101 .. "); Examination Guidelines
supra note 1, at 7481 ("When functional descriptive material is recorded on some computer-
readable medium it becomes structurally and functionally interrelated to the medium and will be
statutory in most cases."); 35 U.S.C. § 101 (2000).

33. In re Beauregard, 53 F.3d at 1584. Under the printed matter doctrine, "a mere
arrangement of printed matter though seemingly a 'manufacture' is rejected as not being within
the statutory classes." MPEP, supra note 3, § 706.03(a).

34. In re Beauregard, 53 F.3d at 1584.

35. Id.

SOURCE CODE VERSUS OBJECT CODE

referred to as Beauregard claims, as statutory subject matter (i.e.,
articles of manufacture).

The following subsections present two possible reasons why
the PTO reversed its position with regard to the patentability of
computer programs embodied on a computer-readable medium in
Beauregard. The first possibility is that the PTO interpreted and
extended the rationale in the Lowry decision regarding the printed
matter doctrine. The second possibility is that the overwhelming
support from the software industry influenced the PTO's position. In
both cases, we suggest that the PTO never considered source code
when declaring computer programs embodied in a computer-readable
medium to be patentable.

D. Following the Lowry Rationale

The reversal of the PTO's position regarding Beauregard claims
may likely have been motivated by the Federal Circuit's decision in
In re Lowry.36 As such, it is important to explore the metes and
bounds of the decision in order to understand whether, under Lowry,
source code (as opposed to object code) on a computer-readable
medium infringes Beauregard claims.

In Lowry, the Federal Circuit upheld patent claims for a memory
containing data stored in a data structure.37 In doing so, the court
rejected the Board's assertion that such claims could be analogized
and rejected under the printed matter doctrine. Specifically, the
Board reasoned that the functional relationship between the printed
matter (data stored in the data structure) and the substrate (memory)
was not new or non-obvious; in the Board's view, Lowry's invention

36. See Jeffrey S. Draeger, Comment, Are Beauregard Claims Really Valid?, 17 J.
MARSHALL J. COMPUTER & INFO. L. 347, 361 (1998) ("The In re Lowry decision came after the
PTO Board's decision on Beauregard's claims but before the claims reached the Federal Circuit.
Thus, the decision in In re Lowry foreshadowed the reversal of the PTO Board's application of
the printed matter rejection in the In re Beauregard case, since the Federal Circuit reversed a
printed matter rejection in Lowry."); Jeffrey R. Kuester et al., A New Frontier in Patents: Patent
Claims to Propagated Signals, 17 J. MARSHALL J. COMPUTER & INFO. L. 75, 79 (1998) ("It
should be noted that the Appellants filed their brief in In re Beauregard on April 4, 1994 and the
Federal Circuit issued its opinion in In re Lowry on August 26, 1994. It appears that the PTO
may have decided to allow the application involved in In re Beauregard to issue as a patent after
receiving the Federal Circuit's decision in In re Lowry, since both cases involved the application
of the printed matter rejection to claims directed to computer programs stored in a memory
device."); GREGORY A. STOBBS, SOFTWARE PATENTS § 9.59 (Supp. 1999) ("Nevertheless, as
Lowry had extensively addressed the printed matter rejection, the Patent Office moved to
remand Beauregard for reconsideration, claiming that the rejection of Beauregard's application
may have been improper in light of Lowry.").

37. In re Lowry, 32 F.3d 1579, 1581 (Fed. Cir. 1994).

20021

244 COMPUTER & HIGH TECHNOLOGY LA WJOURNAL [Vol. 18

merely disclosed the storage of information into a computer's
memory.38 In response, the Federal Circuit found that the printed
matter doctrine was inapplicable and emphasized that Lowry's
claimed data structures defined "functional characteristics of the
memory. 39 The court observed that "the claims require specific
electronic structural elements which impart a physical organization on
the information stored in memory," that "Lowry's data structures
impose a physical organization on the data," and that "Lowry's data
structures are physical entities that provide increased efficiency in
computer operation."4 °

Thus, if the PTO was indeed motivated by the Federal Circuit's
rationale in Lowry to accept computer-readable medium patent claims
as statutory, then whatever "information" is recorded on such a
computer-readable medium should satisfy the above Lowry
requirements. Specifically, the Federal Circuit's rejection of the
printed matter doctrine in Lowry relied on the fact that the "claims
require specific electronic structural elements which impart a physical
organization on the information stored in memory."' In other words,
when object code is loaded into the computer, it directs the
computer's CPU to physically change the exact sequence of bits
stored in the computer's memory, thereby manifesting or "forming"
the actual data structures in the memory.42 Conversely, a memory
that is not manipulated by the CPU through the computer instructions
in object code would not infringe on the Lowry claim. Since source
code cannot be loaded into the computer to manipulate the CPU and
manifest such data structures in memory, source code, even when
loaded into a computer, could in no way infringe the Lowry claim.43

The PTO must have believed that, under the Lowry court's
rationale for rejecting the printed matter doctrine, the Federal Circuit

38. Id. at 1582.
39. Id. at 1583 ("Thus, Lowry's claims define functional characteristics of the

memory.").
40. Id.
41. Id.
42. See generally ANDREW S. TANENBAUM, STRUCTURED COMPUTER ORGANIZATION

398 (3d ed. Prentice Hall 1990) ("[T]hree programs-the user's object program, the operating
system, and the microprogram--can be found in the computer's memory at run time. All traces
of the original source program have vanished." (emphasis added)). For a simple example of the
implementation of a data structure in memory, which demonstrates the implementation of a
stack data structure in memory, see id. at 178-86.

43. While loading the source code into the memory of a computer does impart a physical
organization on the memory, such physical organization would not realize the functionality as
described in the claims.

SOURCE CODE VERSUS OBJECT CODE

would have allowed Lowry's claimed data structures even if the
object code was embodied on a computer-readable medium, rather
than actually loaded into the computer's memory, thereby creating the
data structures in a different part of the computer's memory.4" Thus,
although object code is merely an instruction set that can create a data
structure in a computer's memory, and not the data structure itself, the
PTO did not view this as an important distinction. Whether the
underlying substrate was a computer-readable medium or a computer
memory was unimportant, as long as what was embodied in the
underlying substrate (i.e., object code) would be able to "impart a
physical organization on the information stored in memory," once it
was loaded into a computer.

Under the above rationale, object code embodied on a computer-
readable medium would infringe a Beauregard claim. Specifically,
once object code (i.e., a sequence of ones and zeros that are
interpreted as instructions by the computer's CPU) is loaded into a
computer, it "impart[s] a physical organization on the information
stored in memory" and "define[s] functional characteristics" of the
computer's memory by directing the computer's CPU to manipulate
data and by referring to specific addresses in the computer's
memory. 45 Object code stored on a computer-readable medium can
be directly loaded into a particular computer in order to direct the
computer's CPU to create "specific electrical structural elements
which impart a physical organization on the information stored in
memory.""6 Thus, in order for a memory to embody the data
structures described in Lowry, the code that effects this functionality
is necessarily object code, not source code.

Unlike object code, source code cannot be directly loaded into a
computer in order to direct the computer's CPU to create "specific
electrical structural elements which impart a physical organization on
the information stored in memory." 7 Because source code is human-
readable, not computer-readable, it must first be compiled into
computer-readable object code before it can direct a computer's CPU

44. It is important to understand that the computer memory in which object code (i.e.,
instructions) is loaded in order to direct the computer's CPU to manipulate data via data
structures is a different part of the computer's memory than the memory that the computer's
CPU uses to actually create the data structures and manipulate data per those object code
instructions.

45. In re Lowry, 32 F.3d 1579, 1583-84 (Fed. Cir. 1994).
46. Id.

47. Id.

2002]

246 COMPUTER & HIGH TECHNOLOGY LA WJOURNAL [Vol. 18

to "define functional characteristics of the memory." 48 While object
code enables a computer to manipulate specific addresses in the
computer's memory (i.e., "impart[s] a physical organization on the
data"49), source code is simply a description of that capability. As
such, one could argue that source code embodied on a computer-
readable medium is more like "mere data" that would be rejected as
non-statutory under the printed matter doctrine since, in human-
readable form, source code is only "useful and intelligible to the
human mind,, 50 and has no functional relationship to any structural
element or physical organization of a computer, as required by Lowry.
Under this argument, human-readable source code does not fulfill the
requirements under Lowry-source code only becomes functional
when it is compiled into object code.

E. Support from the Software Industry

Alternatively or additionally, the PTO's change of position in
Beauregard may have been influenced by the overwhelming support
for computer-readable medium claims by the software industry. 51

One of the main reasons that the software industry strongly endorsed
the patentability of computer programs embodied on a computer-
readable medium was that software patents in the form of process and

52
machine claims were difficult to assert against competitors.
Because process and machine claims could only be directly infringed
by end users who were typically customers of the software

48. Id.
49. Id.

50. Id. at 1583 ("The printed matter cases 'dealt with claims defining as the invention
certain novel arrangements of printed lines or characters, useful and intelligible to only the
human mind."' (quoting In re Bemhart, 417 F.2d 1395, 1399 (C.C.P.A. 1969))).

51. A total of 10 amicus briefs were filed in Beauregard, nine urging reversal of the
Board's rejection and one taking no formal position. Shawn McDonald, Patenting Floppy

Disks, or How the Federal Circuit's Acquiescence has Filled the Void Left by Legislative

Inaction, 3 VA. J.L. & TECH. 9, 89 (Fall 1998), at
http://vjolt.student.virginia.edu/graphics/vol3/home art9.html; see Robert C. Laurenson,
Computer Software 'Article of Manufacture'Patents, 12 COMPUTER LAW. 18, 19 (June 1995).

52. See Laurenson, supra note 51, at 19
(The alternative means of obtaining protection of computer software under the
patent system, i.e., by casting the software in the form of the "process" it
performs, or in the form of the "machine" on which it executes, are also not
entirely adequate. Claims directed to the process performed by the software (or
the machine on which the software executes) are largely directed to the activities
of end users. Such claims may thus not be entirely effective for the purpose of
enforcing the underlying patent against competitors.).

SOURCE CODE VERSUS OBJECT CODE

companies, such companies were reluctant to bring suit.53 As such,
software companies would have to sue competitors for contributory
infringement or inducing infringement, both of which required proof
of direct infringement by customers as well as knowledge of the
patent. 54 Thus, allowing claims for computer programs embodied in
computer-readable mediums would enable software companies to sue
competitors for direct infringement and eliminate the burden of
having to prove indirect infringement.55

The above arguments made by the software industry only
contemplated the possibility of object code being stored on a
computer-readable medium, and not source code. That is, software
companies were primarily concerned that competitors would
commercialize their patented inventions (i.e., sell executable object
code) with impunity. Since the software companies' concerns
focused upon a new direct cause of action against competitors, to
eliminate the need with process and machine claims to assert an
indirect infringement suit, then one could argue that the ability to
assert such a new direct cause of action should be construed narrowly,
within the jurisprudence and rationale that lies behind the
patentability of software as machine and process claims. As
discussed earlier, both machine and process claims that involve
software must necessarily utilize object code, not source code. It
therefore follows that the related Beauregard claims should only be
infringed when object code, and not source code, is stored on a
computer-readable medium. Under this argument, there seems to be
no compelling reason to extend patent protection to source code
embodied on a computer-readable medium, since source code cannot
be loaded into a computer to infringe a machine patent nor can it be
executed to infringe a process patent.

One might argue that the transformation of source code to object
code through compilation is merely a mechanical process that should
make no substantive difference in its treatment.5 6 Therefore, the
argument continues, if object code in a computer-readable medium
infringes a Beauregard claim, then so should the original source code.
However, this argument misses the point, that an allegedly infringing
product must realize the functionality (i.e., the elements) as claimed

53. See McDonald, supra note 51, 98.
54. See Laurenson, supra note 51, at 21 n.22; McDonald, supra note 51, 98. See also 35

U.S.C. § 271(b)-(c) (2000).
55. See McDonald, supra note 51, 99.

56. Note, however, the complexity of compilers as described supra in Section It.

2002] 247

248 COMPUTER & HIGH TECHNOLOGY LA WJOURNAL [Vol. 18

57in the patent. While object code can be directly loaded into a
computer to realize this functionality, source code cannot.

As an analogy, consider a detailed blueprint for a new, non-
obvious, and useful car. Assume that such a blueprint can be simply
scanned and submitted to a master computer that directs the robots on
the production floor to build the car in accordance with the blueprint.
Photocopying (or "making") or selling the blueprint would not
infringe any patent rights in the car since the blueprint does not
realize the functionality of the claims (nor is it proper statutory
subject matter). In contrast, making or selling a car built from those
blueprints would likely infringe a machine claim in the patent under
the rights granted under 35 U.S.C. § 271.58 As such, despite being a
mere mechanical process from blueprint to car, only the car is proper
patentable subject matter, as a machine. Similarly, source code is like
a detailed blueprint to the object code (i.e., the car). Since source
code is not computer-readable and therefore can not effect the
functional or structural requirements under the patent claims, the
argument that compiling source code to object code is merely
mechanical, like the transformation of the blueprint to the car, does
not effectively support the theory of source code patentability.5 9

F. The PTO's Guidelines for Computer-Related Inventions

Nevertheless, the PTO Guidelines issued in 1996 provide
examples of computer-readable medium claims comprising "source
code segments," indicating that the PTO does consider source code
embodied in a computer-readable medium to be statutory subject
matter.60 Specifically, the PTO provides the following example as a
proper article of manufacture claim:

57. The MPEP recommends that "[A]pplicants should be encouraged to functionally
define the steps the computer will perform rather than simply reciting source or object code
instructions." MPEP, supra note 3, § 2106, at 2100-20 (emphasis added).

58. 35 U.S.C. § 271(a) ("Except as otherwise provided in this title, whoever without
authority makes, uses, offers to sell or sells any patent invention, within the United States, or
imports into the United States any patented invention during the term of the patent therefore,
infringes the patent.").

59. One might further argue that the source code/object code distinction is meaningless
because the source code already describes the new, non-obvious, and useful invention that a
patent owner is trying to protect, and to allow such source code to be copied or distributed with
impunity would weaken the strength of patent protection. However, this argument fails to take
into account that the very paper upon which a patent specification and claims are written also
describes the new, non-obvious, and useful invention that a patent owner is trying to protect.

60. See PATENT & TRADEMARK OFFICE, U.S. DEP'T OF COMMERCE, EXAMINATION
GUIDELINES FOR COMPUTER RELATED INVENTIONS: CLAIM EXAMPLES-
COMPRESSION/ENCRYPTION EXAMPLES (Mar. 28, 1996), available at

2002] SOURCE CODE VERSUS OBJECT CODE

A computer program embodied on computer-readable medium for
monitoring and controlling an automated manufacturing plant
using a telemetered processed data signal comprising:

a. a compression source code segment comprising... [recites
self-documenting source code]; and
b. an encryption source code segment comprising... [recites
self-documenting source code].

Seemingly contradictorily, the PTO Manual of Patent Examining
Procedure ("MPEP") notes that only "functional descriptive material"
and not "nonfunctional descriptive material" is patentable when
claimed on computer-readable medium because it "permits the
function of the descriptive material to be realized., 62 The MPEP
describes "functional descriptive material" as consisting of "data
structures or computer programs which impart functionality when
employed as a computer component."63 Arguably, only object code,
not source code, meets this description. Source code, without more,
when embodied on a computer-readable medium, neither "permits the
function it describes [in human-readable form] to be realized" nor can
it be "employed as a computer component [which imparts

http://www.uspto.gov/web/ofices/pac/dapp/oppd/pdf/compenex.pdf [hereinafter CLAIM

EXAMPLES]; see also Examination Guidelines supra note 1, at 7485; MPEP, supra note 3, §
2106. MPEP § 2106 includes the Guidelines as well as additional comments regarding
computer-related inventions not included in the Guidelines. Id.

61. CLAIM EXAMPLES, supra note 60, claim 12, at 34. Notice that such a claim would not
be infringed by a CD-ROM containing object code. Furthermore, MPEP § 2106 states that:

When a claim or part of a claim is defined in computer program code, whether in
source or object code format, a person of skill in the art must be able to ascertain
the metes and bounds of the invention. In certain circumstances, as where self-
documenting programming code is employed, use of programming language in a
claim would be permissible because such program source code presents
"sufficiently high-level language and descriptive identifiers" to make it
universally understood to others in the art without the programmer having to
insert comments ... Applicants should be encouraged to functionally define the
steps the computer will perform rather than simply reciting source or object code
instructions.

MPEP, supra note 3, § 2106, at 2100-19 to -20 (emphasis added). The foregoing advises a
patent examiner how to assess whether a claim that is defined in computer program code
"particularly pointing out and distinctly claiming the invention" as required under 35 U.S.C. §
112. See 35 U.S.C. § 112 (2000). This assessment differs from the assessment of whether the
actual source code itself if embodied on a computer-readable medium, is statutory subject
matter, under 35 U.S.C. § 101. While using source code to describe the functionality of a claim
(e.g., whether a process, machine, or product claim) may prove adequate for § 112 purposes, the

foregoing statement says nothing about whether source code itself can infringe a Beauregard
claim.

62. MPEP, supra note 3, § 2106, at 2100-12.

63. Id. at 2100-11 (emphasis added).

250 COMPUTER & HIGH TECHNOLOGY LAWJOURNAL [Vol. 18

functionality]." 64 Only when source code is compiled into object
code do such capabilities emerge. For example, only object code can
be "employed as a computer component," namely by being loaded
into the computer to direct the CPU to manipulate memory.65 Source
code is much more similar to music, literature, art, or photographs
that are embodied on a computer-readable medium. Such material is
deemed to be nonstatutory "nonfunctional descriptive material," and
the computer-readable medium in which it is embodied is "nothing
more than a carrier., 66

Furthermore, the MPEP defines a computer program as "a set of
instructions capable of being executed by a computer."67 Again,
under this definition, object code constitutes a computer program, but
source code does not, since it is not capable of being executed by a
computer. The MPEP also suggests that a computer program is only
statutory when it is encoded on a computer-readable medium because
such a medium is "needed to realize the computer program's
functionality. 68 However, even when source code is encoded on a
computer-readable medium, the source code's functionality is still not
realized until it is compiled into object code and then loaded into the
computer.

As such, the PTO's guidance seems to have added more
confusion than clarity. The PTO's reason that data structures and
computer programs not embodied on a computer-readable medium
are not statutory is that "they are not capable of causing functional
change in the computer" 69 Thus, the PTO believes that once a data

64. Id. at 2100-11 to -12.
65. Id.
66. Id. at 2100-14.
67. Id. at 2100-13 (emphasis added).
68. MPEP, supra note 3, § 2106, at 2100-13 ("Office personnel should treat a claim for a

computer program, without the computer-readable medium needed to realize the computer-
programs functionality, as nonstatutory functional descriptive material.").

69. Id. In contrast, the MPEP states that "a claimed computer-readable medium encoded
with a data structure" does define structural and functional interrelationship between the
computer hardware and software components that do permit the data structure's functionality to
be realized. Id at 2100-13. Such a statement, however, may reflect a misunderstanding by the
PTO of the relationship between data structures and computer-readable mediums. That is, data
structures, themselves, cannot be encoded in a computer-readable medium. However, the object
code that provides instructions to a computer to create such data structures in the memory of the
computer can be encoded on a computer-readable medium. Specifically, the object code is
loaded from the computer-readable medium into the computer's memory, which then directs the
computer's CPU to create a data structure in another part of the computer's memory. The data
structure, itself, can only be manifested within the memory of the computer. The foregoing
explanation reflects the essence of the Lowry decision. See In re Lowry, 32 F.3d 1579, 1583-84
(Fed. Cir. 1994). In order to be infringed, the Lowry memory claim essentially required object

SOURCE CODE VERSUS OBJECT CODE

structure or computer program is embodied on a computer-readable
medium, it should be capable of causing functional change in the
computer. However, source code, even when embodied on a
computer-readable medium, is no different from source that is not
embodied on a computer-readable medium. That is, source code is
not capable of causing functional change in a computer--only object
code is. 70 As such, source code, whether or not on a computer-
readable medium, is not computer-readable itself and therefore seems
no different than nonstatutory "computer listings per se, i.e., the
descriptions or expressions of the programs," even if it is physically
embodied on a computer-readable medium. 71 Indeed, if source code
on a computer readable medium is patentable subject matter even
though some intermediate processing is necessary before it can be
executed (i.e., compiling), then, by extension, so also should be a
handwritten source code handwritten on a piece of paper since the
only difference is the number of intermediate machine processing
steps (i.e., scanning the code on paper, utilizing handwriting
recognition software, and then compiling). Consequently, to say that
source code on computer-readable medium infringes Beauregard
claims arguably exalts form over substance and could be contrary to
the intentions of the Federal Circuit.

IV. IMPLICATIONS FOR THE OPEN SOURCE COMMUNITY

In 1984, Richard Stallman quit his job as a researcher at the MIT
Artificial Intelligence Lab to form the GNU project.72 Frustrated by
what he called the "proprietary software social system," that is, the
lack of free sharing and community in the computer industry,
Stallman launched the GNU project in hopes of reviving the software
sharing community that had inspired him during the early 1970s as an
Al Lab staff system developer at MIT.73 The aim of the GNU project
was to develop an operating system for which the source code would

code to already be loaded into the computer in order to direct the CPU to create the data

structure in the memory.

70. Indeed, a general-purpose computer (such as a PC or a Macintosh) typically does not
have compilers installed as part of its operating system. As such, providing a user with a CD-
ROM having only source code and no object code would be useless, unless the user had also
installed a compiler on her system. Thus, one might argue that the definition of a "computer"
would not include a compiler.

71. MPEP, supra note 3, § 2106, at 2100-13.

72. See Stallman, supra note 5, at 57.
73. Id.

2002]

252 COMPUTER & HIGH TECHNOLOGYLAWJOURNAL [Vol. 18

be free.74 In order to ensure that GNU software would be free,
Stallman introduced a concept he called "copyleft" in which everyone
was given permission to copy, modify, and distribute modified
versions of the GNU software, but not to add restrictions of their
own. 75 The concept of copyleft was implemented in the form of the
GNU General Public License ("GPL") that accompanied GNU
software.76 A year later, the Free Software Foundation was created as
a tax-free charity to promote computer users' right to use, study,
copy, modify, and redistribute computer programs, including the
GNU operating system, as free software.77

However, because the GNU project and the Free Software
Foundation were decidedly anti-business, a group of leaders in the
free software community, including Eric Raymond, Tim O'Reilly,
and Bruce Perens, developed the idea for Open Source and the Open
Source Definition in 1997 to encourage businesses to adopt the
concept of free software. 78 Under the Open Source Definition,
programmers were assured of (1) the right to make copies of an open
source program and distribute those copies, (2) the right to have
access to the software's source code, and (3) the right to make
improvements to the program.79 While the GPL satisfied the
requirements of the Open Source Definition, it was more restrictive.
For example, the Open Source Definition allowed a user of open
source software to produce a derivative work and distribute such work
as proprietary. 0 In contrast, the user of GNU software, under the
GPL, was required to distribute derivative works under the terms of
the GPL (i.e., not proprietary).8'

Because third parties outside the stream of open source
development can hold software patents related to the techniques and

74. Under Stallman's definition, a program is free if: (1) you have the freedom to run the
program for any purpose, (2) you have the freedom to modify the program to suit your needs,
(3) you have the freedom to redistribute copies; and (4) you have the freedom to distribute
modified versions of the program. Id. at 56.

75. See id. at 59.

76. See FREE SOFTWARE FOUNDATION, INC., THE GNU GENERAL PUBLIC LICENSE

(GPL) (Version 2, June 1991), at http://www.opensource.org/licenses/gpl-license.html.
77. For more information, see Free Software Foundation, at

http://www.fsf.org/fsf/fsf.html (last modified Apr. 8, 2002).
78. See Chris DiBona et al., Introduction to OPEN SOURCES: VOICES FROM THE OPEN

SOURCE REVOLUTION, supra note 5, at 3.

79. See Bruce Perens, The Open Source Definition, in OPEN SOURCES: VOICES FROM THE
OPEN SOURCE REVOLUTION, supra note 5, at 172.

80. See id. at 177.
81. See id.

SOURCE CODE VERSUS OBJECT CODE

functionalities utilized in an open source project, software patents
have always been viewed as a threat to free software by the open
source community.82 The essential fear of the open source
community is that free software development and distribution can be
controlled or prevented by third party patent holders. However, if
source code, as discussed earlier, is not patentable, such fears, with
regard to source code development and distribution, can be allayed.
That is, no third party patent can prevent open source developers from
copying, modifying, or distributing source code.

A. Non-Infringing and Infringing Open Source Activities

Those in the open source community typically describe the
consequences of impeding on software patent rights broadly, without
exploring in detail how certain open source activities might, if at all,
infringe on such rights. For example, Russell Pavlicek writes that
"[i]f the author unknowingly violated a software patent, the program
cannot be distributed without permission from the patent holder., 83

Similarly, Richard Stallman laments that "[s]oftware patents
monopolize an algorithm, or a feature, or a technique so that nobody
[but the patent holder] can use them in developing a program. And
this makes software development dangerous. 84

Despite such concerns about infringement, it is clear that if
source code embodied in a computer-readable medium cannot
infringe a Beauregard claim, then the distribution and development of
source code, as well as the studying, copying, and modification of
source code, without more, cannot infringe any patent. As discussed
earlier, the pertinent statutory subject matter that can be patentable in
the computer software arts are processes, machines, and articles of
manufacture.85 In order to infringe a patented process, one must
necessarily practice the steps in the process. However, a patented
process regarding software can only be practiced when the object
code, not source code, is executed on a computer, thereby realizing

82. See, e.g., Stallman, supra note 5, at 67 ("The worst threat we face comes from
software patents, which can put algorithms and features off-limits to free software for up to
twenty years.").

83. PAVLICEK, supra note 5, at 161 (emphasis added).

84. J.S. Kelly, An interview with Richard Stallman, LINUXWORLD.COM, 2000 (emphasis
added), at http://www.linuxworld.comlinuxworld/lw-2000-03/lw-03-rms.html?4-4 (last visited
Apr. 11, 2002).

85. 35 U.S.C. § 101 (2000) ("Whoever invents or discovers any new and useful process,
machine, manufacture, or composition of matter, or any new and useful improvement thereof,
may obtain a patent therefore, subject to the conditions and requirements of this title.").

2002]

254 COMPUTER & HIGH TECHNOLOGY LA WJOURNAL [Vol.18

the functionality of the process. Similarly, a patented machine
regarding software can only be infringed when the object code, not
source code, is loaded into the memory of a computer.86 Finally,
under Beauregard, a computer program embodied on a computer-
readable medium can be patentable as a product or article of
manufacture. However, if, as argued earlier, a "computer program"
must be in object code format in order to satisfy the elements of a
Beauregard claim, then activities regarding source code are also free
from the possible infringement of patented products (i.e., Beauregard
claims).

While activities regarding source code may be free from patent
concerns, the same cannot be said for activities regarding object code.
That is, under the Patent Act, direct infringement consists of making,
using, offering to sell, or selling the invention defined by the claims
of a patent, without the authority of the patent owner.87 Under a
software process patent, running the object code on a computer could
constitute "using" the invention under the Patent Act. Similarly,
under a software machine patent, loading the object code into a
computer's memory could constitute "making" the invention under
the Patent Act. Indeed, even simply copying the object code onto a
CD-ROM, floppy diskette, or hard disk drive or just compiling the
source code into object code and saving the object code onto a CD-
ROM, floppy diskette, or hard disk drive could constitute "making"
the invention under a Beauregard claim. Similarly, distributing the
object code to third parties could constitute "selling" the invention
under a Beauregard claim.

In summary, if source code does not infringe Beauregard claims,
those open source activities that involve only source code may be free
from patent infringement concerns. Under this premise, the practice
of open source security-that is, the widespread distribution of the
source code of security software in an effort to study and quickly
identify vulnerabilities in the code--does not implicate software
patent rights, since the distribution of source code does not impede

86. See In re Alappat, 33 F.3d 1526, 1545 (Fed. Cir. 1994) ("[A] computer operating
pursuant to software may represent patentable subject matter, provided, of course, that the
claimed subject matter meets all of the other requirements of Title 35.").

87. See 35 U.S.C. § 271(a) ("Except as otherwise provided in this title, whoever without
authority makes, uses, offers to sell or sells any patented invention, within the United States or
imports into the United States any patented invention during the term of the patent therefor,
infringes the patent.").

SOURCE CODE VERSUS OBJECT CODE

any patent rights.8 8 Similarly, the pure development or modification
of source code, whose functionality may be claimed in a software
patent, does not infringe on such patents. 89 Likewise, general
activities regarding source code, such as copying, modifying, and
distributing, which lie at the heart of the open source movement, do
not infringe on software patents. Nevertheless, the moment that
source code is compiled into object code, or object code, rather than
source code, is run, copied, distributed, or modified, then software
patent rights may be implicated.

B. Liability Under Contributory Infringement or Inducing
Infringement

Even if source code embodied on a computer-readable medium
does not infringe Beauregard claims, those who copy, modify, or
distribute source code must be aware of potential liabilities under
theories of contributory infringement or induced infringement. The
Patent Act defines contributory infringement as selling:

[A] component of a patented machine, manufacture, combination
or composition, or a material or apparatus for use in practicing a
patent process, constituting a material part of the invention,
knowing the same to be especially made or especially adapted for
use in an infringement of such patent, and not a staple article or
commodity of commerce suitable for substantial noninfringing

90use.

Thus, distributing or selling source code could constitute
contributory infringement, since source code could be considered "a
component of a patented manufacture" in which the patented
manufacture (i.e., Beauregard claim) is the compiled object code
(embodied on a computer-readable medium). 9' However,
contributory infringement requires that the alleged infringer have
knowledge of the patent, as well as knowledge that that compilation

88. See, e.g., Alex Salkever, Is Open-Source Security Software Safe?, BUSINESSWEEK
ONLINE, Dec. 11, 2001, at

http://www.businessweek.com/bwdaily/dnflash/dec200l/nf200l1211_3015.htm (last visited
Apr. 11, 2002).

89. Nevertheless, such development or modification almost always necessarily involves
compiling the source code into object code for testing purposes. Such compilation could
potentially infringe a Beauregard claim in a software patent. However, one might argue that the
damages for such infringement would be minimal, if at all.

90. 35 U.S.C. § 271(c).
91. Similarly, source code could also be considered a component of patented machine or

process, once it is compiled into object code and either loaded into a computer or executed.

2002]

256 COMPUTER & HIGH TECHNOLOGY LAWJOURNAL [Vol. 18

of the source code into object code would infringe the patent.92 Thus,
if the alleged infringer has no knowledge that the object code
resulting from compilation of source code may infringe a patent, she
will not be liable for contributory infringement. 9 Furthermore, the
alleged infringer may also argue that the study and analysis of the
source code, without its compilation, is a "substantial noninfringing
use" which prevents its distribution from implicating contributory
infringement.

94

Similarly, the Patent Act states that "whoever actively induces
infringement of a patent shall be liable as an infringer." 95 Thus,
distributing or selling source code may be considered "actively
inducing infringement" if such distribution or sale leads to the direct
infringement of a software machine, process, or manufacture claim
(i.e., by utilizing the resulting object code). However, liability for
inducing infringement requires that the alleged inducer have the
specific intent to encourage direct infringement and not merely that
she had knowledge that the acts may constitute infringement.96 As
such, without knowledge of the patent, a distributor or seller of source
code cannot be liable for inducing infringement.

V. CONCLUSION

From a computer programmer's perspective, making a
distinction between source code and object code may, initially, seem
ridiculous. However, from a legal perspective, equating the two, at
least for patent purposes, may lead to unintended consequences many
computer programmers would find objectionable. In our current legal
framework, it is clear that executing object code, or even copying
object code onto a hard drive, may potentially infringe a software
patent. However, as discussed, it is unclear whether the copying of
source code also potentially infringes a patent. In a world where
source code is statutory subject matter and does infringe such patents,
any programmer who downloads source code from a Web site simply

92. For a general description of contributory infringement, see ROBERT L. HARMON,
PATENTS AND THE FEDERAL CIRCUIT § 6.4, 306-12 (The Bureau of National Affairs, Inc., 4th
ed. 2001).

93. See Hewlett-Packard Co. v. Bausch & Lomb, Inc., 909 F.2d 1464, 1469 n.4 (Fed. Cir.
1990) ("Although not clear on the face of the statute, subsequent case law held that § 27 1(c)
required not only knowledge that the component was especially made or adapted for a particular
use but also knowledge of the patent which proscribed that use.").

94. 35 U.S.C. § 271(c) (2000).
95. Id. § 271(b).

96. See Manville Sales Corp. v. Paramount Sys., 917 F.2d 544, 553 (Fed. Cir. 1990).

SOURCE CODE VERSUS OBJECT CODE

to read it and study its quality may be liable for patent infringement.
In such a world, it does not matter that the programmer ultimately
chooses not to use the source code (i.e., compiling it and executing
the object code), because the mere act of downloading the source
code (i.e., "making" under the Patent Act) itself infringes the patent.
Framed in this context, distinguishing source code from object code
seems much less ridiculous.

This Article has presented an argument that certain activities
relating only to source code, such as copying, modifying, and
distributing, may not infringe any third party software patent rights.97

Specifically, process and machine patents cannot be infringed until
object code is either executed or loaded into the memory of a
computer, and therefore they are not implicated by activities relating
only to source code. Additionally, under Beauregard claims,
"computer programs" that are embodied in a computer-readable
medium could be narrowly construed to mean only object code, since
object code, and not source code, is the only format "capable of being
executed by a computer., 98 The implication of this interpretation for
the open source community is that activities that involve only source
code, and not object code, such as open source security efforts, may
be freely practiced without the concern of infringing software patents.
Nevertheless, any time object code is implicated in an open source
activity, software patents still remain "the monster hiding under every
software developer's bed." 99

97. This Article has not addressed the issues regarding interpreters, which immediately
execute high-level languages without compilation. See WEBOPEDIA, INTERPRETER, at
http://www.webopedia.com/TERM/i/interpreter.html (last modified Dec. 10, 2001). However,
without extensive analysis of these issues, if a high-level language that is intended to be
executed through an interpreter rather than compiled into object code is embodied in a
computer-readable medium, then under the reasons presented in this Article, such an
embodiment would likely infringe a Beauregard claim.

98. See MPEP, supra note 3, § 2106, at 2100-13.
99. See ROSENBERG, supra note 5, at 240.

2002]

	Santa Clara High Technology Law Journal
	January 2002

	Source Code versus Object Code: Patent Implications for the Open Source Community
	Daniel S. Lin
	Matthew Sag
	Ronald S. Laurie
	Recommended Citation

	Source Code versus Object Code: Patent Implications for the Open Source Community

